G References

Aaronson, Scott, and Patrick Rall. 2020. “Quantum Approximate Counting, Simplified.” In Symposium on Simplicity in Algorithms, 24–32. SIAM.
Aharonov, Dorit, and Yonathan Touati. 2018. “Quantum Circuit Depth Lower Bounds for Homological Codes.” arXiv Preprint arXiv:1810.03912.
Ahmadi, Hamed, and Chen-Fu Chiang. 2010. “Quantum Phase Estimation with Arbitrary Constant-Precision Phase Shift Operators.” arXiv Preprint arXiv:1012.4727.
Allcock, Jonathan, Jinge Bao, João F. Doriguello, Alessandro Luongo, and Miklos Santha. 2023. “Constant-Depth Circuits for Uniformly Controlled Gates and Boolean Functions with Application to Quantum Memory Circuits.” https://arxiv.org/abs/2308.08539.
Ambainis, A. 2012. “Variable Time Amplitude Amplification and a Faster Quantum Algorithm for Solving Systems of Linear Equations 29th Int.” In Symp. Theoretical Aspects of Computer Science (STACS 2012), 14:636–47.
Ambainis, Andris. 2002. “Quantum Lower Bounds by Quantum Arguments.” Journal of Computer and System Sciences 64 (4): 750–67.
———. 2007. “Quantum Walk Algorithm for Element Distinctness.” SIAM Journal on Computing 37 (1): 210–39.
———. 2012. “Variable Time Amplitude Amplification and Quantum Algorithms for Linear Algebra Problems.” In STACS’12 (29th Symposium on Theoretical Aspects of Computer Science), 14:636–47. LIPIcs.
Ambainis, Andris, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krišjānis Prūsis, and Jevgēnijs Vihrovs. 2019. “Quantum Speedups for Exponential-Time Dynamic Programming Algorithms.” In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 1783–93. SIAM.
Ambainis, Andris, Harry Buhrman, Koen Leijnse, Subhasree Patro, and Florian Speelman. 2022. “Matching Triangles and Triangle Collection: Hardness Based on a Weak Quantum Conjecture.” arXiv Preprint arXiv:2207.11068.
An, Dong, and Lin Lin. 2022. “Quantum Linear System Solver Based on Time-Optimal Adiabatic Quantum Computing and Quantum Approximate Optimization Algorithm.” ACM Transactions on Quantum Computing 3 (2): 1–28.
Andrew, Childs. 2017. “Lecture Notes on Quantum Algorithms.” https://www.cs.umd.edu/~amchilds/qa/.
Apeldoorn, Joran van, András Gilyén, Sander Gribling, and Ronald de Wolf. 2020. “Quantum SDP-Solvers: Better Upper and Lower Bounds.” Quantum 4: 230.
Araujo, Israel F., Daniel K. Park, Francesco Petruccione, and Adenilton J. da Silva. 2021. “A Divide-and-Conquer Algorithm for Quantum State Preparation.” Scientific Reports 11 (1): 6329. https://doi.org/10.1038/s41598-021-85474-1.
Arrazola, Juan Miguel, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd. 2020. “Quantum-Inspired Algorithms in Practice.” Quantum 4: 307.
Arthur, David, and Sergei Vassilvitskii. 2006. “How Slow Is the k-Means Method?” In Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, 144–53. ACM.
———. 2007. “K-Means++: The Advantages of Careful Seeding.” In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1027–35. Society for Industrial; Applied Mathematics.
Arunachalam, Srinivasan, Vlad Gheorghiu, Tomas Jochym-O’Connor, Michele Mosca, and Priyaa Varshinee Srinivasan. 2015. “On the Robustness of Bucket Brigade Quantum RAM.” New Journal of Physics 17 (12): 123010.
Babbush, Ryan, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. 2018. “Encoding Electronic Spectra in Quantum Circuits with Linear t Complexity.” Physical Review X 8 (4): 041015.
Bausch, Johannes. 2022. “Fast Black-Box Quantum State Preparation.” Quantum 6: 773.
Bausch, Johannes, Sathyawageeswar Subramanian, and Stephen Piddock. 2021. “A Quantum Search Decoder for Natural Language Processing.” Quantum Machine Intelligence 3 (1): 1–24.
Beals, Robert, Stephen Brierley, Oliver Gray, Aram W. Harrow, Samuel Kutin, Noah Linden, Dan Shepherd, and Mark Stather. 2013. “Efficient Distributed Quantum Computing.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469 (2153): 20120686. https://doi.org/10.1098/rspa.2012.0686.
Bellante, Armando, and Stefano Zanero. 2022. “Quantum Matching Pursuit: A Quantum Algorithm for Sparse Representations.” Physical Review A 105 (2): 022414.
Bergholm, Ville, Juha J. Vartiainen, Mikko Möttönen, and Martti M. Salomaa. 2005. “Quantum Circuits with Uniformly Controlled One-Qubit Gates.” Phys. Rev. A 71 (May): 052330. https://doi.org/10.1103/PhysRevA.71.052330.
Berkes, Pietro. 2005. Pattern Recognition with Slow Feature Analysis.” Cognitive Sciences EPrint Archive (CogPrints) 4104.
Berkes, P., and L. Wiskott. 2005. Slow feature analysis yields a rich repertoire of complex cell properties.” Journal of Vision 5 (6).
Bernstein, Daniel J, Stacey Jeffery, Tanja Lange, and Alexander Meurer. 2013. “Quantum Algorithms for the Subset-Sum Problem.” In International Workshop on Post-Quantum Cryptography, 16–33. Springer.
Berry, Dominic W, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D Somma. 2015. “Simulating Hamiltonian Dynamics with a Truncated Taylor Series.” Physical Review Letters 114 (9): 090502.
Berry, Dominic W, Andrew M Childs, and Robin Kothari. 2015. “Hamiltonian Simulation with Nearly Optimal Dependence on All Parameters.” In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, 792–809. IEEE.
Biernacki, Christophe, Gilles Celeux, and Gérard Govaert. 2003. “Choosing Starting Values for the EM Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models.” Computational Statistics & Data Analysis 41 (3-4): 561–75.
Blaschke, Tobias, and Laurenz Wiskott. 2004. “Independent Slow Feature Analysis and Nonlinear Blind Source Separation.” In International Conference on Independent Component Analysis and Signal Separation, 742–49. Springer.
Blömer, Johannes, and Kathrin Bujna. 2013. “Simple Methods for Initializing the EM Algorithm for Gaussian Mixture Models.” CoRR.
Borga, Magnus, Tomas Landelius, and Hans Knutsson. 1997. A Unified Approach to Pca, Pls, Mlr and Cca. Linköping University, Department of Electrical Engineering.
Boyer, Michel, Gilles Brassard, Peter Høyer, and Alain Tapp. 1998. “Tight Bounds on Quantum Searching.” Fortschritte Der Physik: Progress of Physics 46 (4-5): 493–505.
Brassard, Gilles, Frederic Dupuis, Sebastien Gambs, and Alain Tapp. 2011. “An Optimal Quantum Algorithm to Approximate the Mean and Its Application for Approximating the Median of a Set of Points over an Arbitrary Distance.” arXiv Preprint arXiv:1106.4267.
Brassard, Gilles, Peter Hoyer, Michele Mosca, and Alain Tapp. 2002. “Quantum Amplitude Amplification and Estimation.” Contemporary Mathematics 305: 53–74.
Brugière, Timothée Goubault de. 2020. “Methods for Optimizing the Synthesis of Quantum Circuits.” PhD thesis, Université Paris-Saclay.
Buhrman, Harry, Richard Cleve, Ronald de Wolf, and Christof Zalka. 1999. “Bounds for Small-Error and Zero-Error Quantum Algorithms.” In 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), 358–68. IEEE.
Buhrman, Harry, Richard Cleve, John Watrous, and Ronald de Wolf. 2001. “Quantum Fingerprinting.” Physical Review Letters 87 (16): 167902.
Buhrman, Harry, Marten Folkertsma, Bruno Loff, and Niels M. P. Neumann. 2023. “State Preparation by Shallow Circuits Using Feed Forward.” arXiv Preprint arXiv:2307.14840. https://doi.org/10.48550/arXiv.2307.14840.
Buhrman, Harry, Bruno Loff, Subhasree Patro, and Florian Speelman. 2022. “Memory Compression with Quantum Random-Access Gates.” arXiv Preprint arXiv:2203.05599.
Buhrman, Harry, John Tromp, and Paul Vitányi. 2001. “Time and Space Bounds for Reversible Simulation.” In International Colloquium on Automata, Languages, and Programming, 1017–27. Springer.
Cade, Chris, and Ashley Montanaro. 2017. “The Quantum Complexity of Computing Schatten \(p\)-Norms.” arXiv Preprint arXiv:1706.09279.
Camps, Daan, Lin Lin, Roel Van Beeumen, and Chao Yang. 2024. “Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices.” SIAM Journal on Matrix Analysis and Applications 45 (1): 801–27.
Celeux, Gilles, and Gérard Govaert. 1992. “A Classification EM Algorithm for Clustering and Two Stochastic Versions.” Computational Statistics & Data Analysis 14 (3): 315–32.
Chakrabarti, Shouvanik, Rajiv Krishnakumar, Guglielmo Mazzola, Nikitas Stamatopoulos, Stefan Woerner, and William J Zeng. 2021. “A Threshold for Quantum Advantage in Derivative Pricing.” Quantum 5: 463.
Chakraborty, Shantanav, András Gilyén, and Stacey Jeffery. 2019. “The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation.” In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Chakraborty, Shantanav, Aditya Morolia, and Anurudh Peduri. 2022. “Quantum Regularized Least Squares.” arXiv Preprint arXiv:2206.13143.
Childs, Andrew M, Robin Kothari, and Rolando D Somma. 2015. Quantum linear systems algorithm with exponentially improved dependence on precision.”
———. 2017. Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision.” SIAM Journal on Computing 46 (6): 1920–50. https://doi.org/10.1137/16M1087072.
Childs, Andrew M, and Nathan Wiebe. 2012. “Hamiltonian Simulation Using Linear Combinations of Unitary Operations.” arXiv Preprint arXiv:1202.5822.
Church, Kenneth W, and William A Gale. 1995. “Poisson Mixtures.” Natural Language Engineering 1 (2): 163–90.
Cong, Iris, and Luming Duan. 2015. “Quantum Discriminant Analysis for Dimensionality Reduction and Classification.” arXiv Preprint arXiv:1510.00113.
Costa, Pedro, Dong An, Yuval R Sanders, Yuan Su, Ryan Babbush, and Dominic W Berry. 2021. “Optimal Scaling Quantum Linear Systems Solver via Discrete Adiabatic Theorem.” arXiv Preprint arXiv:2111.08152.
Cuccaro, Steven A, Thomas G Draper, Samuel A Kutin, and David Petrie Moulton. 2004. “A New Quantum Ripple-Carry Addition Circuit.” arXiv Preprint Quant-Ph/0410184.
De Bie, Tijl, Nello Cristianini, and Roman Rosipal. 2005. “Eigenproblems in Pattern Recognition.” In Handbook of Geometric Computing, 129–67. Springer.
de Wolf, Ronald. 2019. “Quantum Computing: Lecture Notes.” arXiv:1907.09415.
Deerwester, Scott, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman. 1990. “Indexing by Latent Semantic Analysis.” Journal of the American Society for Information Science 41 (6): 391–407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9.
Dervovic, Danial, Mark Herbster, Peter Mountney, Simone Severini, Naı̈ri Usher, and Leonard Wossnig. 2018. “Quantum Linear Systems Algorithms: A Primer.” arXiv Preprint arXiv:1802.08227.
Deutsch, David, and Richard Jozsa. 1992. “Rapid Solution of Problems by Quantum Computation.” Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 439 (1907): 553–58.
Dexter, AR, and DW Tanner. 1972. “Packing Densities of Mixtures of Spheres with Log-Normal Size Distributions.” Nature Physical Science 238 (80): 31.
Di Matteo, Olivia, Vlad Gheorghiu, and Michele Mosca. 2020. “Fault-Tolerant Resource Estimation of Quantum Random-Access Memories.” IEEE Transactions on Quantum Engineering 1: 1–13.
Doriguello, Joao F, George Giapitzakis, Alessandro Luongo, and Aditya Morolia. 2024. “On the Practicality of Quantum Sieving Algorithms for the Shortest Vector Problem.” arXiv Preprint arXiv:2410.13759.
Doriguello, João F., Alessandro Luongo, Jinge Bao, Patrick Rebentrost, and Miklos Santha. 2022. “Quantum Algorithm for Stochastic Optimal Stopping Problems with Applications in Finance.” In. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.TQC.2022.2.
Dörn, Sebastian. 2008. “Quantum Complexity of Graph and Algebraic Problems.” PhD thesis, Universität Ulm.
Drineas, Petros, Iordanis Kerenidis, and Prabhakar Raghavan. 2002. “Competitive Recommendation Systems.” In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, 82–90. ACM.
Duan, Bojia, Jiabin Yuan, Chao-Hua Yu, Jianbang Huang, and Chang-Yu Hsieh. 2020. “A Survey on HHL Algorithm: From Theory to Application in Quantum Machine Learning.” Physics Letters A 384 (24): 126595.
Durr, Christoph, and Peter Hoyer. 1996. “A Quantum Algorithm for Finding the Minimum.” arXiv Preprint Quant-Ph/9607014.
Dürr, Christoph, Mark Heiligman, Peter HOyer, and Mehdi Mhalla. 2006. “Quantum Query Complexity of Some Graph Problems.” SIAM Journal on Computing 35 (6): 1310–28.
Dürr, Christoph, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. 2004. Quantum query complexity of some graph problems *.” https://arxiv.org/abs/0401091v2.
Escalante-B, Alberto N, and Laurenz Wiskott. 2012. “Slow Feature Analysis: Perspectives for Technical Applications of a Versatile Learning Algorithm.” KI-Künstliche Intelligenz 26 (4): 341–48.
Ghitany, ME, Ross A Maller, and S Zhou. 1994. “Exponential Mixture Models with Long-Term Survivors and Covariates.” Journal of Multivariate Analysis 49 (2): 218–41.
Ghojogh, Benyamin, Fakhri Karray, and Mark Crowley. 2019. “Eigenvalue and Generalized Eigenvalue Problems: Tutorial.” arXiv Preprint arXiv:1903.11240.
Gidney, Craig. 2018. “Halving the Cost of Quantum Addition.” Quantum 2: 74.
Gidney, Craig, and Martin Ekerå. 2021. “How to Factor 2048 Bit RSA Integers in 8 Hours Using 20 Million Noisy Qubits.” Quantum 5: 433.
Gilyén, András, and Tongyang Li. 2019. “Distributional Property Testing in a Quantum World.” arXiv Preprint arXiv:1902.00814.
Gilyén, András, Yuan Su, Guang Hao Low, and Nathan Wiebe. 2019. “Quantum Singular Value Transformation and Beyond: Exponential Improvements for Quantum Matrix Arithmetics.” In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 193–204.
Giovannetti, Vittorio, Seth Lloyd, and Lorenzo Maccone. 2008. Quantum random access memory.” Physical Review Letters 100 (16): 160501.
Gleinig, Niels, and Torsten Hoefler. 2021. “An Efficient Algorithm for Sparse Quantum State Preparation.” In 2021 58th ACM/IEEE Design Automation Conference (DAC), 433–38. IEEE.
Greenacre, Michael J. 1984. “Theory and Applications of Correspondence Analysis.”
Gribling, Sander, Iordanis Kerenidis, and Dániel Szilágyi. 2021. “Improving Quantum Linear System Solvers via a Gradient Descent Perspective.” arXiv Preprint arXiv:2109.04248.
Grinko, Dmitry, Julien Gacon, Christa Zoufal, and Stefan Woerner. 2019. “Iterative Quantum Amplitude Estimation.” arXiv Preprint arXiv:1912.05559.
Grover, Lov K. 2000. “Synthesis of Quantum Superpositions by Quantum Computation.” Physical Review Letters 85 (6): 1334.
———. 2005. “Fixed-Point Quantum Search.” Physical Review Letters 95 (15): 150501.
Grover, Lov, and Terry Rudolph. 2002. “Creating Superpositions That Correspond to Efficiently Integrable Probability Distributions.” arXiv Preprint Quant-Ph/0208112.
Gu, Xingjian, Chuancai Liu, and Sheng Wang. 2013. Supervised Slow Feature Analysis for Face Recognition.” In, 178–84. http://link.springer.com/10.1007/978-3-319-02961-0\%5F22.
Gur, Tom, Min-Hsiu Hsieh, and Sathyawageeswar Subramanian. 2021. “Sublinear Quantum Algorithms for Estimating von Neumann Entropy.” arXiv Preprint arXiv:2111.11139.
Gyurik, Casper, Chris Cade, and Vedran Dunjko. 2020. “Towards Quantum Advantage for Topological Data Analysis.” arXiv Preprint arXiv:2005.02607.
Hamoudi, Yassine, and Frédéric Magniez. 2018. “Quantum Chebyshev’s Inequality and Applications.” arXiv Preprint arXiv:1807.06456.
Hamoudi, Yassine, Maharshi Ray, Patrick Rebentrost, Miklos Santha, Xin Wang, and Siyi Yang. 2020. “Quantum Algorithms for Hedging and the Sparsitron.” arXiv Preprint arXiv:2002.06003.
Hann, Connor T. 2021. “Practicality of Quantum Random Access Memory.” PhD thesis, Yale University.
Hann, Connor T, Gideon Lee, SM Girvin, and Liang Jiang. 2021. “Resilience of Quantum Random Access Memory to Generic Noise.” PRX Quantum 2 (2): 020311.
Harrow, Aram W., Avinatan Hassidim, and Seth Lloyd. 2009. Quantum Algorithm for Linear Systems of Equations.” Physical Review Letters 103 (15): 150502. http://link.aps.org/doi/10.1103/PhysRevLett.103.150502.
Harun-Ur-Rashid. 2018. “Research Paper Dataset.” Https://Www. Kaggle. Com/Harunshimanto/Research-Paper.
Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning. Vol. 1. Springer Series in Statistics. New York, NY: Springer New York. http://www.springerlink.com/index/10.1007/b94608.
Heinrich, Stefan. 2002. “Quantum Summation with an Application to Integration.” Journal of Complexity 18 (1): 1–50.
Herbert, Steven. 2021. “No Quantum Speedup with Grover-Rudolph State Preparation for Quantum Monte Carlo Integration.” Physical Review E 103 (6): 063302.
Hogan, Robin. 2006. “How to Combine Errors.”
Holmes, Adam, and Anne Y Matsuura. 2020. “Efficient Quantum Circuits for Accurate State Preparation of Smooth, Differentiable Functions.” In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), 169–79. IEEE.
Hsu, Hsiang, Salman Salamatian, and Flavio P Calmon. 2019. “Correspondence Analysis Using Neural Networks.” In The 22nd International Conference on Artificial Intelligence and Statistics, 2671–80.
Huang, Hsin-Yuan, Kishor Bharti, and Patrick Rebentrost. 2019. “Near-Term Quantum Algorithms for Linear Systems of Equations.” arXiv Preprint arXiv:1909.07344.
Iske, Armin. 2018. Approximation Theory and Algorithms for Data Analysis. Springer. https://link.springer.com/book/10.1007/978-3-030-05228-7.
Jeffery, Stacey. 2014. “Frameworks for Quantum Algorithms.”
Kalai, Adam Tauman, Ankur Moitra, and Gregory Valiant. 2012. “Disentangling Gaussians.” Communications of the ACM 55 (2): 113–20.
Kapoor, Ashish, Nathan Wiebe, and Krysta Svore. 2016. “Quantum Perceptron Models.” In Advances in Neural Information Processing Systems, 3999–4007.
Kennedy, Tom. 2016. Chapter2: Basics of direct Monte Carlo.” https://www.math.arizona.edu/~tgk/mc/book_chap2.pdf.
Kerenidis, Iordanis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. 2019. “Q-Means: A Quantum Algorithm for Unsupervised Machine Learning.” In Advances in Neural Information Processing Systems, 4136–46.
Kerenidis, Iordanis, Jonas Landman, and Anupam Prakash. 2019. “Quantum Algorithms for Deep Convolutional Neural Networks.” arXiv Preprint arXiv:1911.01117.
Kerenidis, Iordanis, and Alessandro Luongo. 2020. “Classification of the MNIST Data Set with Quantum Slow Feature Analysis.” Physical Review A 101 (6): 062327.
Kerenidis, Iordanis, and Anupam Prakash. 2017. “Quantum Recommendation Systems.” Proceedings of the 8th Innovations in Theoretical Computer Science Conference.
———. 2018. “A Quantum Interior Point Method for LPs and SDPs.” arXiv:1808.09266.
———. 2020. “Quantum Gradient Descent for Linear Systems and Least Squares.” Physical Review A 101 (2): 022316.
Kitaev, A Yu. 1996. “Quantum Measurements and the Abelian Stabilizer Problem.” In Electronic Colloq. On Computational Complexity.
Krishnakumar, Rajiv, Mathias Soeken, Martin Roetteler, and William Zeng. 2022. “AQ# Implementation of a Quantum Lookup Table for Quantum Arithmetic Functions.” In 2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS), 75–82. IEEE.
Krizhevsky, Alex et al. 2009. “Learning Multiple Layers of Features from Tiny Images.”
Ku, Harry H et al. 1966. “Notes on the Use of Propagation of Error Formulas.” Journal of Research of the National Bureau of Standards 70 (4): 263–73.
Kuperberg, Greg. 2011. “Another Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem.” arXiv Preprint arXiv:1112.3333.
LeCun, Yann. 1998. “The MNIST Database of Handwritten Digits.” Http://Yann. Lecun. Com/Exdb/Mnist/.
Lin, Lin, and Yu Tong. 2020. “Optimal Polynomial Based Quantum Eigenstate Filtering with Application to Solving Quantum Linear Systems.” Quantum 4: 361.
Litinski, Daniel, and Naomi Nickerson. 2022. “Active Volume: An Architecture for Efficient Fault-Tolerant Quantum Computers with Limited Non-Local Connections.” arXiv Preprint arXiv:2211.15465.
Liu, Chuanhai, and Donald B Rubin. 1995. ML Estimation of the t Distribution Using EM and Its Extensions, ECM and ECME.” Statistica Sinica, 19–39.
Lloyd, Seth, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum principal component analysis.” Nature Physics 10 (9): 631–33. https://doi.org/10.1038/nphys3029.
———. 2014. “Quantum Principal Component Analysis.” Nature Physics 10 (9): 631.
Lloyd, Stuart. 1982. “Least Squares Quantization in PCM.” IEEE Transactions on Information Theory 28 (2): 129–37.
Low, Guang Hao, and Isaac L Chuang. 2017. “Hamiltonian Simulation by Uniform Spectral Amplification.” arXiv Preprint arXiv:1707.05391.
———. 2019. “Hamiltonian Simulation by Qubitization.” Quantum 3: 163.
Low, Guang Hao, Vadym Kliuchnikov, and Luke Schaeffer. 2018. “Trading t-Gates for Dirty Qubits in State Preparation and Unitary Synthesis.” arXiv Preprint arXiv:1812.00954.
Luongo, Alessandro, Antonio Michele Miti, Varun Narasimhachar, and Adithya Sireesh. 2024. “Measurement-Based Uncomputation of Quantum Circuits for Modular Arithmetic.” arXiv Preprint arXiv:2407.20167.
Manara, M. P., A. Perotti, and R. Scapellato. 2007. Geometria e Algebra Lineare. Esculapio.
Markov. 1890. “On a Question by d. I. Mendeleev.” Zap. Imp. Akad. Nauk. St. Petersburg.
Mathur, Natansh, Jonas Landman, Yun Yvonna Li, Martin Strahm, Skander Kazdaghli, Anupam Prakash, and Iordanis Kerenidis. 2022. “Medical Image Classification via Quantum Neural Networks.” https://arxiv.org/abs/2109.01831.
McArdle, Sam, András Gilyén, and Mario Berta. 2022. “Quantum State Preparation Without Coherent Arithmetic.” arXiv Preprint arXiv:2210.14892. https://doi.org/10.48550/arXiv.2210.14892.
Metger, Tony, and Henry Yuen. 2023. “stateQIP= statePSPACE.” In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), 1349–56. IEEE.
Mitchell, Tom M et al. 1997. “Machine Learning.”
Miyahara, Hideyuki, Kazuyuki Aihara, and Wolfgang Lechner. 2020. “Quantum Expectation-Maximization Algorithm.” Physical Review A 101 (1): 012326.
Moitra, Ankur. 2018. Algorithmic Aspects of Machine Learning. Cambridge University Press.
Montanaro, Ashley. 2015. “Quantum Speedup of Monte Carlo Methods.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471 (2181): 20150301.
Moosa, Mudassir, Thomas W Watts, Yiyou Chen, Abhijat Sarma, and Peter L McMahon. 2023. “Linear-Depth Quantum Circuits for Loading Fourier Approximations of Arbitrary Functions.” Quantum Science and Technology 9 (1): 015002.
Mori, Hitomi, Kosuke Mitarai, and Keisuke Fujii. 2024. “Efficient State Preparation for Multivariate Monte Carlo Simulation.” arXiv Preprint arXiv:2409.07336.
Murphy, Kevin P. 2012. Machine Learning: A Probabilistic Perspective. MIT press.
Nannicini, Giacomo. 2019. “Fast Quantum Subroutines for the Simplex Method.” arXiv Preprint arXiv:1910.10649.
Ng, Andrew. 2012. “CS229 Lecture Notes - Machine Learning.”
Nielsen, Michael A, and Isaac Chuang. 2002. “Quantum Computation and Quantum Information.” AAPT.
O’Donnell, Ryan. 2015. “Lecture 13: Lower Bounds Using the Adversary Method.” Carnegie Mellon University.
O’Donnell, Ryan, and John Wright. 2016. “Efficient Quantum Tomography.” In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, 899–912.
Otterbach, JS, R Manenti, N Alidoust, A Bestwick, M Block, B Bloom, S Caldwell, et al. 2017. “Unsupervised Machine Learning on a Hybrid Quantum Computer.” arXiv Preprint arXiv:1712.05771.
Partridge, Matthew, and Rafael Calvo. 1997. “Fast Dimensionality Reduction and Simple PCA.” Intelligent Data Analysis 2 (3): 292–98.
Paturi, Ramamohan. 1992. “On the Degree of Polynomials That Approximate Symmetric Boolean Functions (Preliminary Version).” In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, 468–74. STOC ’92. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/129712.129758.
Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et al. 2011. “Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12: 2825–30.
Plesch, Martin, and Časlav Brukner. 2011. “Quantum-State Preparation with Universal Gate Decompositions.” Phys. Rev. A 83 (March): 032302. https://doi.org/10.1103/PhysRevA.83.032302.
Prakash, Anupam. 2014. “Quantum Algorithms for Linear Algebra and Machine Learning.” PhD thesis, EECS Department, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.html.
Rattew, Arthur G., and Bálint Koczor. 2022. “Preparing Arbitrary Continuous Functions in Quantum Registers with Logarithmic Complexity.” arXiv Preprint arXiv:2205.00519. https://doi.org/10.48550/arXiv.2205.00519.
Rebentrost, Patrick, Brajesh Gupt, and Thomas R Bromley. 2018. “Quantum Computational Finance: Monte Carlo Pricing of Financial Derivatives.” Physical Review A 98 (2): 022321.
Rebentrost, Patrick, and Seth Lloyd. 2018. “Quantum Computational Finance: Quantum Algorithm for Portfolio Optimization.” arXiv Preprint arXiv:1811.03975 98 (4): 042308.
Rebentrost, Patrick, Miklos Santha, and Siyi Yang. 2021. “Quantum Alphatron.” arXiv Preprint arXiv:2108.11670.
Rosenkranz, Matthias, Eric Brunner, Gabriel Marin-Sanchez, Nathan Fitzpatrick, Silas Dilkes, Yao Tang, Yuta Kikuchi, and Marcello Benedetti. 2024. “Quantum State Preparation for Multivariate Functions.” arXiv Preprint arXiv:2405.21058.
Rosenthal, Gregory. 2021. “Query and Depth Upper Bounds for Quantum Unitaries via Grover Search.” arXiv Preprint arXiv:2111.07992. https://doi.org/10.48550/arXiv.2111.07992.
———. 2024. “Efficient Quantum State Synthesis with One Query.” In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2508–34. https://doi.org/10.1137/1.9781611977912.89.
Rosenthal, Gregory, and Henry Yuen. 2021. “Interactive Proofs for Synthesizing Quantum States and Unitaries.” arXiv Preprint arXiv:2108.07192.
Rudin, Walter et al. 1964. Principles of Mathematical Analysis. Vol. 3. McGraw-hill New York.
Sanders, Yuval R, Guang Hao Low, Artur Scherer, and Dominic W Berry. 2019. “Black-Box Quantum State Preparation Without Arithmetic.” Physical Review Letters 122 (2): 020502.
Schmitt, Bruno, Fereshte Mozafari, Giulia Meuli, Heinz Riener, and Giovanni De Micheli. 2021. “From Boolean Functions to Quantum Circuits: A Scalable Quantum Compilation Flow in c++.” In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 1044–49. IEEE.
Schuld, Maria, and Francesco Petruccione. 2018. Supervised Learning with Quantum Computers. Vol. 17. Springer.
Schuld, Maria, Ilya Sinayskiy, and Francesco Petruccione. 2015. An introduction to quantum machine learning.” Contemporary Physics 56 (2): 172–85. https://doi.org/10.1080/00107514.2014.964942.
Schuld, M., and F. Petruccione. 2021. Machine Learning with Quantum Computers. Quantum Science and Technology. Springer International Publishing. https://books.google.jo/books?id=-N5IEAAAQBAJ.
Serfozo, Richard. 2009. Basics of Applied Stochastic Processes. Springer Science & Business Media.
Shende, Vivek V, Stephen S Bullock, and Igor L Markov. 2006. “Synthesis of Quantum-Logic Circuits.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25 (6): 1000–1010.
Shende, Vivek V, Igor L Markov, and Stephen S Bullock. 2004. “Minimal Universal Two-Qubit Controlled-NOT-Based Circuits.” Physical Review A—Atomic, Molecular, and Optical Physics 69 (6): 062321.
Soeken, Mathias, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno Schmitt, Giulia Meuli, Fereshte Mozafari, and Giovanni De Micheli. 2018. “The EPFL Logic Synthesis Libraries.” arXiv Preprint arXiv:1805.05121.
Sprekeler, Henning, and Laurenz Wiskott. 2008. Understanding Slow Feature Analysis: A Mathematical Framework.” Cognitive Sciences EPrint Archive (CogPrints) 6223.
Strang, Gilbert. 2016. Introduction to Linear Algebra. Wellesley - Cambridge Press.
Subaşı, Yiğit, Rolando D Somma, and Davide Orsucci. 2019. “Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing.” Physical Review Letters 122 (6): 060504.
Subramanian, Sathyawageeswar, Stephen Brierley, and Richard Jozsa. 2019. “Implementing Smooth Functions of a Hermitian Matrix on a Quantum Computer.” Journal of Physics Communications 3 (6): 065002.
Sun, Lin, Kui Jia, Tsung-Han Chan, Yuqiang Fang, Gang Wang, and Shuicheng Yan. 2014. “DL-SFA: Deeply-Learned Slow Feature Analysis for Action Recognition.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2625–32.
Sun, Xiaoming, Guojing Tian, Shuai Yang, Pei Yuan, and Shengyu Zhang. 2023. “Asymptotically Optimal Circuit Depth for Quantum State Preparation and General Unitary Synthesis.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42 (10): 3301–14. https://doi.org/10.1109/TCAD.2023.3244885.
Tang, Ewin. 2018. “Quantum-Inspired Classical Algorithms for Principal Component Analysis and Supervised Clustering.” arXiv Preprint arXiv:1811.00414.
Ta-Shma, Amnon. 2013. “Inverting Well Conditioned Matrices in Quantum Logspace.” In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, 881–90.
Veras, Tiago ML de, Leon D da Silva, and Adenilton J da Silva. 2022. “Double Sparse Quantum State Preparation.” Quantum Information Processing 21 (6): 204.
Walter, Michael. 2018. “Symmetry and Quantum Information.”
Wiebe, Nathan, Ashish Kapoor, and Krysta M Svore. 2018. “Quantum Nearest-Neighbor Algorithms for Machine Learning.” Quantum Information and Computation 15.
Wiskott Laurenz, and Laurenz Wiskott. 1999. Learning invariance manifolds.” Neurocomputing 26-27: 925–32. https://doi.org/10.1016/S0925-2312(99)00011-9.
Wiskott, L., P. Berkes, M. Franzius, H. Sprekeler, and N. Wilbert. 2011. Slow Feature Analysis.” Scholarpedia 6 (4): 5282.
Wocjan, Pawel, Chen-Fu Chiang, Daniel Nagaj, and Anura Abeyesinghe. 2009. “Quantum Algorithm for Approximating Partition Functions.” Physical Review A 80 (2): 022340.
Xiao, Han, Kashif Rasul, and Roland Vollgraf. 2017. “Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms.” arXiv Preprint Cs.LG/1708.07747, August.
Yin, Jianhua, and Jianyong Wang. 2014. “A Dirichlet Multinomial Mixture Model-Based Approach for Short Text Clustering.” In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 233–42. ACM.
Yoder, Theodore J, Guang Hao Low, and Isaac L Chuang. 2014. “Fixed-Point Quantum Search with an Optimal Number of Queries.” Physical Review Letters 113 (21): 210501.
Yu, Chao-Hua, Fei Gao, Song Lin, and Jingbo Wang. 2019. “Quantum Data Compression by Principal Component Analysis.” Quantum Information Processing 18 (8): 249. https://doi.org/10.1007/s11128-019-2364-9.
Yuan, Pei, and Shengyu Zhang. 2023. “Optimal (Controlled) Quantum State Preparation and Improved Unitary Synthesis by Quantum Circuits with Any Number of Ancillary Qubits.” Quantum 7: 956.
Zhang, Kaining, Min-Hsiu Hsieh, Liu Liu, and Dacheng Tao. 2020. “Efficient State Read-Out for Quantum Machine Learning Algorithms.” arXiv Preprint arXiv:2004.06421.
Zhang, Xiao-Ming, Tongyang Li, and Xiao Yuan. 2022. “Quantum State Preparation with Optimal Circuit Depth: Implementations and Applications.” arXiv Preprint arXiv:2201.11495.
Zhang, Xiao-Ming, Man-Hong Yung, and Xiao Yuan. 2021. “Low-Depth Quantum State Preparation.” Phys. Rev. Res. 3 (December): 043200. https://doi.org/10.1103/PhysRevResearch.3.043200.
Zhang Zhang, and Dacheng Tao. 2012. Slow Feature Analysis for Human Action Recognition.” IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (3): 436–50. http://ieeexplore.ieee.org/document/6136516/.
Zhang, Zhicheng, Qisheng Wang, and Mingsheng Ying. 2024. “Parallel Quantum Algorithm for Hamiltonian Simulation.” Quantum 8: 1228.
Zhao, Liming, Carlos A. Pérez-Delgado, and Joseph F. Fitzsimons. 2016. “Fast Graph Operations in Quantum Computation.” Physical Review A 93 (3). https://doi.org/10.1103/physreva.93.032314.
Zhao, Zhikuan, Jack K Fitzsimons, Patrick Rebentrost, Vedran Dunjko, and Joseph F Fitzsimons. 2021. “Smooth Input Preparation for Quantum and Quantum-Inspired Machine Learning.” Quantum Machine Intelligence 3 (1): 14.
Zhu, Shuchen, Aarthi Sundaram, and Guang Hao Low. 2024. “Unified Architecture for a Quantum Lookup Table.” arXiv Preprint arXiv:2406.18030.