I References

1.
Nielsen MA, Chuang I (2002) Quantum computation and quantum information
2.
De Wolf R (2019) Quantum computing: Lecture notes. arXiv:190709415
3.
Huang H-Y, Bharti K, Rebentrost P (2019) Near-term quantum algorithms for linear systems of equations. arXiv preprint arXiv:190907344
4.
Dörn S (2008) Quantum complexity of graph and algebraic problems. PhD thesis, Universität Ulm
5.
Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to quantum machine learning. Contemporary Physics 56:172–185. https://doi.org/10.1080/00107514.2014.964942
6.
Kapoor A, Wiebe N, Svore K (2016) Quantum perceptron models. In: Advances in neural information processing systems. pp 3999–4007
7.
Zhao L, Pérez-Delgado CA, Fitzsimons JF (2016) Fast graph operations in quantum computation. Physical Review A 93:032314
8.
Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Physical review letters 100:160501
9.
Kerenidis I, Prakash A (2020) Quantum gradient descent for linear systems and least squares. Physical Review A 101:022316
10.
Hamoudi Y, Magniez F (2018) Quantum chebyshev’s inequality and applications. arXiv preprint arXiv:180706456
11.
Dürr C, Heiligman M, Høyer P, Mhalla M (2004) Quantum query complexity of some graph problems *
12.
Prakash A (2014) Quantum algorithms for linear algebra and machine learning. PhD thesis, EECS Department, University of California, Berkeley
13.
Rebentrost P, Lloyd S (2018) Quantum computational finance: Quantum algorithm for portfolio optimization. arXiv preprint arXiv:181103975 98:042308
14.
Kerenidis I, Prakash A (2017) Quantum recommendation systems. Proceedings of the 8th Innovations in Theoretical Computer Science Conference
15.
Chakraborty S, Gilyén A, Jeffery S (2019) The power of block-encoded matrix powers: Improved regression techniques via faster hamiltonian simulation. In: 46th international colloquium on automata, languages, and programming (ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
16.
Gilyén A, Su Y, Low GH, Wiebe N (2019) Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st annual ACM SIGACT symposium on theory of computing. pp 193–204
17.
O’Donnell R, Wright J (2016) Efficient quantum tomography. In: Proceedings of the forty-eighth annual ACM symposium on theory of computing. pp 899–912
18.
Kerenidis I, Prakash A (2018) A quantum interior point method for LPs and SDPs. arXiv:180809266
19.
Kerenidis I, Landman J, Prakash A (2019) Quantum algorithms for deep convolutional neural networks. arXiv preprint arXiv:191101117
20.
Zhang K, Hsieh M-H, Liu L, Tao D (2020) Efficient state read-out for quantum machine learning algorithms. arXiv preprint arXiv:200406421
21.
Mitchell TM, others (1997) Machine learning
22.
Murphy KP (2012) Machine learning: A probabilistic perspective. MIT press
23.
Ghojogh B, Karray F, Crowley M (2019) Eigenvalue and generalized eigenvalue problems: tutorial. arXiv preprint arXiv:190311240
24.
De Bie T, Cristianini N, Rosipal R (2005) Eigenproblems in pattern recognition. In: Handbook of geometric computing. Springer, pp 129–167
25.
Borga M, Landelius T, Knutsson H (1997) A unified approach to pca, pls, mlr and cca. Linköping University, Department of Electrical Engineering
26.
Kitaev AY (1996) Quantum measurements and the abelian stabilizer problem. In: Electronic colloq. On computational complexity
27.
Nannicini G (2019) Fast quantum subroutines for the simplex method. arXiv preprint arXiv:191010649
28.
Ahmadi H, Chiang C-F (2010) Quantum phase estimation with arbitrary constant-precision phase shift operators. arXiv preprint arXiv:10124727
29.
Ta-Shma A (2013) Inverting well conditioned matrices in quantum logspace. In: Proceedings of the forty-fifth annual ACM symposium on theory of computing. pp 881–890
30.
Ambainis A (2012) Variable time amplitude amplification and quantum algorithms for linear algebra problems. In: STACS’12 (29th symposium on theoretical aspects of computer science). LIPIcs, pp 636–647
31.
Brassard G, Hoyer P, Mosca M, Tapp A (2002) Quantum amplitude amplification and estimation. Contemporary Mathematics 305:53–74
32.
Montanaro A (2015) Quantum speedup of monte carlo methods. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471:20150301
33.
Grover LK (2005) Fixed-point quantum search. Physical Review Letters 95:150501
34.
Yoder TJ, Low GH, Chuang IL (2014) Fixed-point quantum search with an optimal number of queries. Physical review letters 113:210501
35.
Grinko D, Gacon J, Zoufal C, Woerner S (2019) Iterative quantum amplitude estimation. arXiv preprint arXiv:191205559
36.
Aaronson S, Rall P (2020) Quantum approximate counting, simplified. In: Symposium on simplicity in algorithms. SIAM, pp 24–32
37.
Ambainis A (2012) Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations 29th int. In: Symp. Theoretical aspects of computer science (STACS 2012). pp 636–47
38.
Durr C, Hoyer P (1996) A quantum algorithm for finding the minimum. arXiv preprint quant-ph/9607014
39.
Ambainis A, Balodis K, Iraids J, et al (2019) Quantum speedups for exponential-time dynamic programming algorithms. In: Proceedings of the thirtieth annual ACM-SIAM symposium on discrete algorithms. SIAM, pp 1783–1793
40.
Boyer M, Brassard G, Høyer P, Tapp A (1998) Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics 46:493–505
41.
Childs AM, Wiebe N (2012) Hamiltonian simulation using linear combinations of unitary operations. arXiv preprint arXiv:12025822
42.
Berry DW, Childs AM, Kothari R (2015) Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th annual symposium on foundations of computer science. IEEE, pp 792–809
43.
Low GH, Chuang IL (2019) Hamiltonian simulation by qubitization. Quantum 3:163
44.
Berry DW, Childs AM, Cleve R, et al (2015) Simulating hamiltonian dynamics with a truncated taylor series. Physical review letters 114:090502
45.
Low GH, Chuang IL (2017) Hamiltonian simulation by uniform spectral amplification. arXiv preprint arXiv:170705391
46.
Subramanian S, Brierley S, Jozsa R (2019) Implementing smooth functions of a hermitian matrix on a quantum computer. Journal of Physics Communications 3:065002
47.
Childs AM, Kothari R, Somma RD (2015) Quantum linear systems algorithm with exponentially improved dependence on precision
48.
Kerenidis I, Landman J, Luongo A, Prakash A (2019) Q-means: A quantum algorithm for unsupervised machine learning. In: Advances in neural information processing systems. pp 4136–4146
49.
Hamoudi Y, Ray M, Rebentrost P, et al (2020) Quantum algorithms for hedging and the sparsitron. arXiv preprint arXiv:200206003
50.
Wiebe N, Kapoor A, Svore KM (2018) Quantum nearest-neighbor algorithms for machine learning. Quantum information and computation 15:
51.
Van Apeldoorn J, Gilyén A, Gribling S, Wolf R de (2020) Quantum SDP-solvers: Better upper and lower bounds. Quantum 4:230
52.
Bellante A (2020) Quantum singular value estimation techniques for data representation. https://www politesi polimi it/handle/10589/166445
53.
Harrow AW, Hassidim A, Lloyd S (2009) Quantum Algorithm for Linear Systems of Equations. Physical Review Letters 103:150502
54.
Kerenidis I, Luongo A (2020) Classification of the MNIST data set with quantum slow feature analysis. Physical Review A 101:062327
55.
Woerner S, Egger DJ (2019) Quantum risk analysis. npj Quantum Information 5:1–8
56.
Andrew C (2017) Lecture notes on quantum algorithms
57.
Otterbach J, Manenti R, Alidoust N, et al (2017) Unsupervised machine learning on a hybrid quantum computer. arXiv preprint arXiv:171205771
58.
Kerenidis I, Prakash A (2017) Quantum gradient descent for linear systems and least squares. arXiv:170404992
59.
Yu C-H, Gao F, Lin S, Wang J (2019) Quantum data compression by principal component analysis. Quantum Information Processing 18:249. https://doi.org/10.1007/s11128-019-2364-9
60.
Greenacre MJ (1984) Theory and applications of correspondence analysis
61.
Hsu H, Salamatian S, Calmon FP (2019) Correspondence analysis using neural networks. In: The 22nd international conference on artificial intelligence and statistics. pp 2671–2680
62.
Deerwester S, Dumais ST, Furnas GW, et al (1990) Indexing by latent semantic analysis. Journal of the American society for information science 41:391–407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
63.
Berkes P, Wiskott L (2005) Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision 5:
64.
Zhang Zhang, Dacheng Tao (2012) Slow Feature Analysis for Human Action Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 34:436–450
65.
Berkes P (2005) Pattern Recognition with Slow Feature Analysis. Cognitive Sciences EPrint Archive (CogPrints) 4104:
66.
Wiskott Laurenz, Wiskott L (1999) Learning invariance manifolds. Neurocomputing 26-27:925–932. https://doi.org/10.1016/S0925-2312(99)00011-9
67.
Wiskott L, Berkes P, Franzius M, et al (2011) Slow feature analysis. Scholarpedia 6:5282
68.
Blaschke T, Wiskott L (2004) Independent slow feature analysis and nonlinear blind source separation. In: International conference on independent component analysis and signal separation. Springer, pp 742–749
69.
Escalante-B AN, Wiskott L (2012) Slow feature analysis: Perspectives for technical applications of a versatile learning algorithm. KI-Künstliche Intelligenz 26:341–348
70.
Sprekeler H, Wiskott L (2008) Understanding Slow Feature Analysis: A Mathematical Framework. Cognitive Sciences EPrint Archive (CogPrints) 6223:
71.
Gu X, Liu C, Wang S (2013) Supervised Slow Feature Analysis for Face Recognition. pp 178–184
72.
Sun L, Jia K, Chan T-H, et al (2014) DL-SFA: Deeply-learned slow feature analysis for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 2625–2632
73.
Lloyd S (1982) Least squares quantization in PCM. IEEE transactions on information theory 28:129–137
74.
Arthur D, Vassilvitskii S (2007) K-means++: The advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial; Applied Mathematics, pp 1027–1035
75.
Arthur D, Vassilvitskii S (2006) How slow is the k-means method? In: Proceedings of the twenty-second annual symposium on computational geometry. ACM, pp 144–153
76.
Ng A (2012) CS229 lecture notes - machine learning
77.
Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning. Springer New York, New York, NY
78.
Pedregosa F, Varoquaux G, Gramfort A, et al (2011) Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–2830
79.
Celeux G, Govaert G (1992) A classification EM algorithm for clustering and two stochastic versions. Computational statistics & Data analysis 14:315–332
80.
Blömer J, Bujna K (2013) Simple methods for initializing the EM algorithm for gaussian mixture models. CoRR
81.
Biernacki C, Celeux G, Govaert G (2003) Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate gaussian mixture models. Computational Statistics & Data Analysis 41:561–575
82.
Moitra A (2018) Algorithmic aspects of machine learning. Cambridge University Press
83.
Church KW, Gale WA (1995) Poisson mixtures. Natural Language Engineering 1:163–190
84.
Dexter A, Tanner D (1972) Packing densities of mixtures of spheres with log-normal size distributions. Nature physical science 238:31
85.
Ghitany M, Maller RA, Zhou S (1994) Exponential mixture models with long-term survivors and covariates. Journal of multivariate Analysis 49:218–241
86.
Yin J, Wang J (2014) A dirichlet multinomial mixture model-based approach for short text clustering. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 233–242
87.
Liu C, Rubin DB (1995) ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statistica Sinica 19–39
88.
Rudin W, others (1964) Principles of mathematical analysis. McGraw-hill New York
89.
Miyahara H, Aihara K, Lechner W (2020) Quantum expectation-maximization algorithm. Physical Review A 101:012326
90.
Drineas P, Kerenidis I, Raghavan P (2002) Competitive recommendation systems. In: Proceedings of the thiry-fourth annual ACM symposium on theory of computing. ACM, pp 82–90
91.
LeCun Y (1998) The MNIST database of handwritten digits. http://yann lecun com/exdb/mnist/
92.
Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv preprint csLG/170807747
93.
Krizhevsky A, others (2009) Learning multiple layers of features from tiny images
94.
Harun-Ur-Rashid (2018) Research paper dataset. https://www. kaggle. com/harunshimanto/research-paper
95.
Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nature Physics 10:631
96.
Cong I, Duan L (2015) Quantum discriminant analysis for dimensionality reduction and classification. arXiv preprint arXiv:151000113
97.
Kalai AT, Moitra A, Valiant G (2012) Disentangling gaussians. Communications of the ACM 55:113–120
98.
Paturi R (1992) On the degree of polynomials that approximate symmetric boolean functions (preliminary version). In: Proceedings of the twenty-fourth annual ACM symposium on theory of computing. Association for Computing Machinery, New York, NY, USA, pp 468–474
99.
Markov (1890) On a question by d. I. mendeleev. Zap Imp Akad Nauk St Petersburg
100.
Ambainis A (2002) Quantum lower bounds by quantum arguments. Journal of Computer and System Sciences 64:750–767
101.
O’Donnell R (2015) Lecture 13: Lower bounds using the adversary method
102.
Strang G (2016) Introduction to linear algebra. Wellesley - Cambridge Press
103.
Manara MP, Perotti A, Scapellato R (2007) Geometria e algebra lineare. Esculapio
104.
Schlesinger E (2011) Algebra lineare e geometria. Zanichelli
105.
Walter M (2018) Symmetry and quantum information
106.
Jerrum MR, Valiant LG, Vazirani VV (1986) Random generation of combinatorial structures from a uniform distribution. Theoretical computer science 43:169–188
107.
Gilyén A, Li T (2019) Distributional property testing in a quantum world. arXiv preprint arXiv:190200814
108.
Hogan R (2006) How to combine errors
109.
Ku HH, others (1966) Notes on the use of propagation of error formulas. Journal of Research of the National Bureau of Standards 70:263–273
110.
Gribling S (2019) Applications of optimization to factorization ranks and quantum information theory